
A Model-Driven Approach for Continuous Delivery of
Cloud Resources

Julio Sandobalin 1, 2

1 Escuela Politécnica Nacional, Ladrón de Guevara, E11-253, P.O. Box 17-01-2759, Ecuador
julio.sandobalin@epn.edu.ec

2 Universitat Politècnica de València, Camino de Vera, s/n, 46022, España
jsandobalin@dsic.upv.es

Abstract. DevOps is a paradigm which brings practices and tools that optimize
the time of software delivery. Cloud-based DevOps processes facilitate continu-
ous delivery of infrastructure and software applications (i.e. cloud resources). In
particular, Infrastructure as Code is the cornerstone of DevOps to infrastructure
automation based on practices from software development. However, there exist
several Configuration Management Tools (CMTs) to infrastructure automation
which have their scripting language, and they are used in a manually intensive
manner. As a result, the manual management of the scripting languages of differ-
ent CMTs is a time-consuming and error-prone activity. For these reasons, the
aim of my PhD research is proposing a model-driven approach to abstract and
automate a continuous delivery process of cloud resources through model-driven
techniques and DevOps. In addition, this approach seeks to cover the develop-
ment process of cloud resources in development, testing and production environ-
ments.

Keywords: Cloud Computing, DevOps, Continuous Delivery, Infrastructure as
Code, Cloud Resources, Model-Driven Development.

1 Introduction and Problem Statement

To succeed in a world where technologies, requirements, ideas, tools and timelines are
constantly changing, information must be accurate, readily available, easily found and,
ideally, constantly delivery in real-time to all members [1]. To automate the develop-
ment software process practitioners are using a new paradigm called DevOps [2] (De-
velopment & Operations) which is promoting continuous collaboration between devel-
opers and operation staff through a set of principles, practices and tools which optimize
the delivery time of software. In particular, the cornerstone of DevOps is the Infrastruc-
ture as Code [3] which is an approach to infrastructure automation based on practices
from software development. There exist many cloud-based DevOps processes which
leverage capacities offered by Cloud Computing and use the Infrastructure as Code to
infrastructure automation. Moreover, cloud-based DevOps processes facilitate contin-

2

uous delivery of infrastructure and software applications (i.e. cloud resources). Config-
uration Management Tools (CMTs) such as Ansible1, Puppet2 or Chef3 have achieved
automate the infrastructure provisioning in the Cloud. Each of CMTs have their script-
ing language, and they are used in a manual manner to orchestrate the infrastructure
provisioning in the Cloud. As a result, the manual management of the scripting lan-
guages of different CMTs is a time-consuming and error-prone activity. Although
CMTs have a high level of automation in the infrastructure provisioning, it remains a
challenge to automate a development process based on models for continuous delivery
of cloud resources.

This research is following the guidelines of the Design Science Methodology [4]
(DSM) which is oriented to information system and software engineering. The goal of
DSM is obtaining an artifact in a problem context. Therefore, the artifact is:

A model-driven approach for continuous delivery of cloud resources.
The problem context is cloud-based DevOps and the stakeholders are developers and

operational staff. To this end, I aim at answering the following research questions:
RQ1. What DevOps-based approaches exist for continuous delivery of cloud re-

sources?
RQ2. How can model-driven techniques support the automation of cloud infrastruc-

ture provisioning? RQ2.1. How to abstract the complexity to model the infrastructure
of different cloud providers? RQ2.2. How to abstract the complexity to manage differ-
ent scripting languages of the Configuration Management Tools?
RQ3. How to achieve a continuous delivery process of cloud resources based on

models? RQ3.1. How to configure a toolchain DevOps for continuous delivery of cloud
resources? RQ3.2. How to achieve a cloud resource development process based on
models that cover the development, testing, and production environments?

2 Related work

Currently, there is much interest in cloud-based DevOps research. Research efforts
have focused on infrastructure provisioning and applications deployment in the Cloud.
In this context, below are described the main research works that aim this approach.

TOSCA [5] is a standard for Topology and Orchestration Specification for Cloud
Application which allows modelling nodes (virtual or physical machines) and orches-
trates the deployment of Cloud applications. TOSCA uses DevOps provisioning tools
such as Chef to infrastructure provisioning and Juju4 for the deployment of cloud based
applications.

MORE [6] is a model-driven approach that focuses on automating the initial deploy-
ment and the dynamic configuration of a system. MORE defines a topology of infra-
structure to specify system structure and transforms this topology into executable code
for the Puppet tool in order to get virtual machines, physical machines and containers.

1 https://www.ansible.com
2 https://puppet.com
3 https://www.chef.io
4 https://jujucharms.com

3

MODAClouds [7] is a European project undertaken to simplify the Cloud services
usage process. One of its goals is to support system developers in building and deploy-
ing applications and related data to multi-Clouds spanning across the full Cloud stack.
MODAClouds includes automated infrastructure provisioning platform using Puppet's
modules.

On the other hand, research works that provide guidelines for continuous delivery
have focused their effort in software delivery process based on code. The main ap-
proaches in this context are following.

Soni et al. [8] present a research work which focuses in the necessities of the insur-
ance industry. This approach proposes a proof of concept for designing an effective
framework for continuous integration, continuous testing, and continuous delivery to
automate the source code compilation, code analysis, test execution, packaging, infra-
structure provisioning, deployment and notifications using build pipeline concept.

Rathod et al. [9] propose a framework for automated testing and deployment to help
automated code analysis, test selection, test scheduling, environment provisioning, test
execution, results from analysis and deployment pipeline.

3 Proposed solution

Answering the research question RQ2, to support the automation of cloud infrastructure
provisioning through model-driven techniques I have developed ARGON [10] (An in-
fRastructure modelinG tool for clOud provisioNing) tool. ARGON has two main com-
ponents: a) Domain Specific Language (DSL) to model the infrastructure in the Cloud
(RQ2.1), and b) Transformation engine which creates scripts to manage different Con-
figuration Management Tools (RQ2.1).

ARGON has an abstract syntax which is defined through an Infrastructure Meta-
model [10] (see Fig. 1a). The metamodel abstract the capacities of the cloud computing
instead of focusing on infrastructure provisioning tools. Thus, I can distinguish four
groups according to the cloud capacities: 1) Computing capacity allows the creation of
Virtual Machines with one or more Security Groups that perform as a firewall. Each
Security Group enables a Virtual Machine access through ports as Inbound rules and
Outbound rules. Load Balancer allows distributing incoming application traffic be-
tween multiple Virtual Machines and with an input rule or Listener that checks the
connection requests. In addition, I can assign a Static IP address to a Virtual Machine.
2) Storage capacity allows the creation of Databases and File servers. 3) Elasticity
capacity allows the creation of templates or Launch Configuration where features of a
Virtual Machine are specified. Templates are used to configure the creation of groups
of Virtual Machines by means of Auto Scaling Group. Creation or elimination of Vir-
tual Machines is done based on Scaling Policy which is executed by an Alarm that
monitor a metric in a period of time. 4) Networking capacity is represented by associ-
ations among metaclasses.

The metamodel only defines the abstract syntax, but not a concrete notation of the
graphical language in ARGON. In order to use graphical notation to render the model
elements in the modelling editors I use a concrete syntax developed by using EuGENia

4

[11]. EuGENia facilitates to generate the models needed to implement a GMF editor
from the Infrastructure Metamodel in Eclipse Modeling Framework [12]. ARGON uses
this DSL to create an Infrastructure Model [10] (see Fig. 1b) representing the infra-
structure with its provisioning requirements of hardware and software.

(a)

(b)

Fig. 1. (a) Infrastructure Metamodel. (b) Infrastructure Model.

The transformation engine creates configurations files or scripts which have the full
instructions to create hardware and its settings and install the underlying software. The
transformation engine abstracts the features of scripting languages of Configuration
Management Tools (CMTs) to create transformation rules which represent modules to
build cloud elements. The transformation engine uses an infrastructure model to apply
on it the model-to-text transformations and generates scripts for CMTs. It is worth men-
tioning that both DSL and transformation engine are JARs (Java ARchives) which can
be used with the Eclipse packages.

Fig. 2. Overview of the infrastructure provisioning pipeline.

On the other hand, as a first approach to answering the research question RQ3, I have
configured an end-to-end automation for a toolchain for infrastructure provisioning in
the Cloud based on DevOps community tools [13] (RQ3.1) and ARGON [10]. This
approach takes advantage of Infrastructure as Code concept to apply DevOps practices
by supporting to a systematized and automated infrastructure provisioning pipeline
[13] (see Fig. 2) (RQ3.2). I use ARGON tool to model an infrastructure model with its
provisioning requirements of hardware and software. Subsequently, I will take this in-
frastructure model and push it toward a Version Control system in order to retain and
provide access to every version of every infrastructure model that has ever been stored

5

on it. Moreover, this approach allows teams with infrastructure models across different
places to work collaboratively. An Artefact Repository is used to provide software li-
braries such as text-to-model transformation engine and the ARGON’s Domain Spe-
cific Language. I use an artefact repository in order to provide a unique provider of
libraries or software artefact in phases of development, build, and testing.

Every infrastructure model must be checked into a single version control repository
to begin the Continuous Integration stage. Continuous integration requires that every
time developers or operational staff commits a change, the entire application be built
and a compressive set of automated tests run against it [2]. The transformation engine
is used as a plugin in the continuous integration server to create scripts for provisioning
tools. After, a set of the automated test proposed by Morris [3] is run against the scripts.
First, Syntax Check Tests are executed for the verification of the structure of the scripts.
Second, Static Code Tests are performed by parsing code or definition files without
executing them in the Cloud.

Scripts that have been built and have overcome a set of automated tests are ready to
be used in CMTs. Continuous Deployment stage takes these scripts built in the previous
stage and automatically use them in CMTs to orchestrate the infrastructure provisioning
and software deployment in the Cloud. Finally, once the infrastructure provision is
done, the Infrastructure Tests are executed towards ensuring the correct functioning of
the infrastructure and the software deployed in the Cloud.

4 Conclusions and Future Directions

At the end of the second year of my PhD research5, my work has focused on demon-
strating the feasibility of how to support the continuous delivery of cloud resources
through model-driven techniques and DevOps. First, ARGON tool provides support to
model the cloud infrastructure elements and then generate scripts to manage Configu-
ration Management Tools. Second, an end-to-end automated DevOps toolchain brings
support for continuous delivery of infrastructure in the Cloud based on infrastructure
models developed by ARGON tool.

The next step of my PhD research6 is to design a first experiment to validate the
ARGON tool. The propose of the experiment is to obtain the effectiveness, efficiency,
perceived ease of use, perceived usefulness and intention to use the ARGON tool from
the point of view of software engineering, in the context of undergraduate and post-
graduate students in Computer Science. On the other hand, I am going to extend the
DevOps toolchain in order to fully support the continuous delivery of infrastructure and
software applications (i.e. cloud resources). Additionally, I will add metrics in the
DevOps toolchain to monitor the continuous delivery process of cloud resources. Fi-
nally, I am going to generalize the findings to propose a model-driven method for con-
tinuous delivery of cloud resources.

5 I started my PhD research in September 2015.
6 The next academic year 2017/2018 is the third year of my PhD in which I have to finish my

research.

6

Acknowledgments. This research is supported by the Value@Cloud project (TIN2013-
46300-R).

References

[1] C. A. Cois, J. Yankel, and A. Connell, “Modern DevOps: Optimizing software
development through effective system interactions,” in IEEE International
Professional Communication Conference (IPCC), 2015.

[2] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation, 1 edition. Addison-Wesley
Professional, 2010.

[3] K. Morris, Infrastructure As Code: Managing Servers in the Cloud, 1st ed.
O’Reilly Media, Inc., 2016.

[4] R. Wieringa, Design Science Methodology for Information Systems and
Software Engineering. 2014.

[5] J. Wettinger, U. Breitenbücher, O. Kopp, and F. Leymann, “Streamlining
DevOps automation for Cloud applications using TOSCA as standardized
metamodel,” Futur. Gener. Comput. Syst., vol. Volume 56, pp. 317–332, 2015.

[6] W. Chen et al., “MORE: A model-driven operation service for cloud-based IT
systems,” in Proceedings - 2016 IEEE International Conference on Services
Computing, SCC 2016, 2016, pp. 633–640.

[7] E. Di Nitto, P. Matthews, D. Petcu, and A. Solberg, Model-Driven Development
and Operation of Multi-Cloud Applications. Cham: Springer International
Publishing, 2017.

[8] M. Soni, “End to End Automation on Cloud with Build Pipeline: The Case for
DevOps in Insurance Industry, Continuous Integration, Continuous Testing,
and Continuous Delivery,” in Proceedings - 2015 IEEE International
Conference on Cloud Computing in Emerging Markets, CCEM 2015, 2016, pp.
85–89.

[9] N. Rathod and A. Surve, “Test orchestration a framework for Continuous
Integration and Continuous deployment,” in 2015 International Conference on
Pervasive Computing: Advance Communication Technology and Application
for Society, ICPC 2015, 2015.

[10] J. Sandobalin, E. Insfran, and S. Abrahao, “An Infrastructure Modelling Tool
for Cloud Provisioning,” in Proceedings - 14th IEEE International Conference
on Services Computing, SCC (in press), 2017.

[11] D. S. Kolovos, A. García-Domínguez, L. M. Rose, and R. F. Paige, “Eugenia:
towards disciplined and automated development of GMF-based graphical
model editors,” Softw. Syst. Model., vol. 16, no. 1, pp. 229–255, Feb. 2015.

[12] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework. 2008.

[13] J. Sandobalin, E. Insfran, and S. Abrahao, “End-to-End Automation in Cloud
Infrastructure Provisioning,” in Proceedings - 26th International Conference
on Information Systems Development, ISD (in press), 2017.

